143 research outputs found

    Ischemic Stroke Severity and Mortality in Patients With and Without Atrial Fibrillation

    Get PDF
    Background Our objective was to investigate stroke severity and subsequent rate of mortality among patients with and without atrial fibrillation (AF). Contemporary data on stroke severity and prognosis in patients with AF are lacking. Methods and Results First‐time ischemic stroke patients from the Danish Stroke Registry (January 2005–December 2016) were included in an observational study. Patients with AF were matched 1:1 by sex, age, calendar year, and CHA2DS2‐VASc score with patients without AF. Stroke severity was determined by the Scandinavian Stroke Scale (0–58 points). The rate of death was estimated by Kaplan‐Meier plots and multivariable Cox regression. Among 86 458 identified patients with stroke, 17 205 had AF. After matching, 14 662 patients with AF and 14 662 patients without AF were included (51.8% women; median age, 79.6 years [25th–75th percentile, 71.8–86.0]). More patients with AF had very severe stroke (0–14 points) than patients without AF (13.7% versus 7.9%, P<0.01). The absolute rates of 30‐day and 1‐year mortality were significantly higher for patients with AF (12.1% and 28.4%, respectively) versus patients without AF (8.7% and 21.8%, respectively). This held true in adjusted models for 30‐day mortality (hazard ratio [HR], 1.40 [95% CI, 1.30–1.51]). However, this association became nonsignificant when additionally adjusting for stroke severity (HR, 1.10 [95% CI, 1.00–1.23]). AF was associated with a higher rate of 1‐year mortality (HR, 1.39 [95% CI, 1.32–1.46]), although it was mediated by stroke severity (HR, 1.15 [95% CI, 1.09–1.23], model including stroke severity). Conclusions In a contemporary nationwide cohort of patients with ischemic stroke, patients with AF had more severe strokes and higher mortality than patients without AF. The difference in mortality was mainly driven by stroke severity

    The football is medicine plaform-scientific evidence, large-scale implementation of evidence-based concepts and future perspectives

    Get PDF
    The idea that football can be used as therapy and as a high-intensity and literally breath-taking training regime goes back centuries. To take one prominent example, the French philosopher Voltaire describes in the Book of Fate (1747), how a patient is cured by playing with a sacred football: “… full-blown and carefully covered with the softest Leather. You must kick this Bladder, Sir, once a Day about your Hall for a whole Hour together, with all the Vigour and Activity you possibly can”, “Ogul, upon making the first Experiment, was ready to expire for want of Breath”, “In short, our Doctor in about 8 days Time, performed an absolute Cure. His Patient was as brisk, active and gay, as One in the Bloom of his Youth.”1 Today, Voltaire and his main character, philosopher Zadig, have been proved right: Football is indeed a breath-taking activity and it can be used as therapy. Albeit today's recommendations suggest a lower training frequency, longer training periods and encourage group-based training, and say that any football can be applied

    A Computational Approach to Understand In Vitro Alveolar Morphogenesis

    Get PDF
    Primary human alveolar type II (AT II) epithelial cells maintained in Matrigel cultures form alveolar-like cysts (ALCs) using a cytogenesis mechanism that is different from that of other studied epithelial cell types: neither proliferation nor death is involved. During ALC formation, AT II cells engage simultaneously in fundamentally different, but not fully characterized activities. Mechanisms enabling these activities and the roles they play during different process stages are virtually unknown. Identifying, characterizing, and understanding the activities and mechanisms are essential to achieving deeper insight into this fundamental feature of morphogenesis. That deeper insight is needed to answer important questions. When and how does an AT cell choose to switch from one activity to another? Why does it choose one action rather than another? We report obtaining plausible answers using a rigorous, multi-attribute modeling and simulation approach that leveraged earlier efforts by using new, agent and object-oriented capabilities. We discovered a set of cell-level operating principles that enabled in silico cells to self-organize and generate systemic cystogenesis phenomena that are quantitatively indistinguishable from those observed in vitro. Success required that the cell components be quasi-autonomous. As simulation time advances, each in silico cell autonomously updates its environment information to reclassify its condition. It then uses the axiomatic operating principles to execute just one action for each possible condition. The quasi-autonomous actions of individual in silico cells were sufficient for developing stable cyst-like structures. The results strengthen in silico to in vitro mappings at three levels: mechanisms, behaviors, and operating principles, thereby achieving a degree of validation and enabling answering the questions posed. We suggest that the in silico operating principles presented may have a biological counterpart and that a semiquantitative mapping exists between in silico causal events and in vitro causal events

    Involvement of Girdin in the Determination of Cell Polarity during Cell Migration

    Get PDF
    Cell migration is a critical cellular process that determines embryonic development and the progression of human diseases. Therefore, cell- or context-specific mechanisms by which multiple promigratory proteins differentially regulate cell migration must be analyzed in detail. Girdin (girders of actin filaments) (also termed GIV, Gα-interacting vesicle associated protein) is an actin-binding protein that regulates migration of various cells such as endothelial cells, smooth muscle cells, neuroblasts, and cancer cells. Here we show that Girdin regulates the establishment of cell polarity, the deregulation of which may result in the disruption of directional cell migration. We found that Girdin interacts with Par-3, a scaffolding protein that is a component of the Par protein complex that has an established role in determining cell polarity. RNA interference-mediated depletion of Girdin leads to impaired polarization of fibroblasts and mammary epithelial cells in a way similar to that observed in Par-3-depleted cells. Accordingly, the expression of Par-3 mutants unable to interact with Girdin abrogates cell polarization in fibroblasts. Further biochemical analysis suggests that Girdin is present in the Par protein complex that includes Par-3, Par-6, and atypical protein kinase C. Considering previous reports showing the role of Girdin in the directional migration of neuroblasts, network formation of endothelial cells, and cancer invasion, these data may provide a specific mechanism by which Girdin regulates cell movement in biological contexts that require directional cell movement

    Systematic Functional Analysis of Bicaudal-D Serine Phosphorylation and Intragenic Suppression of a Female Sterile Allele of BicD

    Get PDF
    Protein phosphorylation is involved in posttranslational control of essentially all biological processes. Using mass spectrometry, recent analyses of whole phosphoproteomes led to the identification of numerous new phosphorylation sites. However, the function of most of these sites remained unknown. We chose the Drosophila Bicaudal-D protein to estimate the importance of individual phosphorylation events. Being involved in different cellular processes, BicD is required for oocyte determination, for RNA transport during oogenesis and embryogenesis, and for photoreceptor nuclei migration in the developing eye. The numerous roles of BicD and the available evidence for functional importance of BicD phosphorylation led us to identify eight phosphorylation sites of BicD, and we tested a total of 14 identified and suspected phosphoserine residues for their functional importance in vivo in flies. Surprisingly, all these serines turned out to be dispensable for providing sufficient basal BicD activity for normal growth and development. However, in a genetically sensitized background where the BicDA40V protein variant provides only partial activity, serine 103 substitutions are not neutral anymore, but show surprising differences. The S103D substitution completely inactivates the protein, whereas S103A behaves neutral, and the S103F substitution, isolated in a genetic screen, restores BicDA40V function. Our results suggest that many BicD phosphorylation events may either be fortuitous or play a modulating function as shown for Ser103. Remarkably, amongst the Drosophila serines we found phosphorylated, Ser103 is the only one that is fully conserved in mammalian BicD

    γCOP Is Required for Apical Protein Secretion and Epithelial Morphogenesis in Drosophila melanogaster

    Get PDF
    Background: There is increasing evidence that tissue-specific modifications of basic cellular functions play an important role in development and disease. To identify the functions of COPI coatomer-mediated membrane trafficking in Drosophila development, we were aiming to create loss-of-function mutations in the γCOP gene, which encodes a subunit of the COPI coatomer complex. Principal Findings: We found that γCOP is essential for the viability of the Drosophila embryo. In the absence of zygotic γCOP activity, embryos die late in embryogenesis and display pronounced defects in morphogenesis of the embryonic epidermis and of tracheal tubes. The coordinated cell rearrangements and cell shape changes during tracheal tube morphogenesis critically depend on apical secretion of certain proteins. Investigation of tracheal morphogenesis in γCOP loss-of-function mutants revealed that several key proteins required for tracheal morphogenesis are not properly secreted into the apical lumen. As a consequence, γCOP mutants show defects in cell rearrangements during branch elongation, in tube dilation, as well as in tube fusion. We present genetic evidence that a specific subset of the tracheal defects in γCOP mutants is due to the reduced secretion of the Zona Pellucida protein Piopio. Thus, we identified a critical target protein of COPI-dependent secretion in epithelial tube morphogenesis. Conclusions/Significance: These studies highlight the role of COPI coatomer-mediated vesicle trafficking in both general and tissue-specific secretion in a multicellular organism. Although COPI coatomer is generally required for protein secretion, we show that the phenotypic effect of γCOP mutations is surprisingly specific. Importantly, we attribute a distinct aspect of the γCOP phenotype to the effect on a specific key target protein
    corecore